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***	BEGIN OF CHANGES	***
[bookmark: _Toc90024026][bookmark: _Toc90026474][bookmark: _Toc91075882]6.28	Solution #28: Authentication between EEC and ECS based on AKMA
[bookmark: _Toc90024027][bookmark: _Toc90026475][bookmark: _Toc91075883]6.28.1	Introduction
This solution addressed key issue#2 Authentication and Authorization between EEC and ECS. 
This solution proposes the authentication between EEC (Edge Enabler Client) and ECS (Edge Configuration Server) based on AKMA. To be more specific, it is proposed to use the KAKMA derived from the AKMA procedure as the trust root to perform the authentication between EEC and ECS.
It is assumed in this solution that ECS is located outside of the MNO's network. 
[bookmark: _Toc90024028][bookmark: _Toc90026476][bookmark: _Toc91075884]6.28.2	Solution details
[bookmark: _Toc90024029][bookmark: _Toc90026477][bookmark: _Toc91075885]6.28.2.1	Procedure
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Figure-6.28.2.1-1. Authentication between the EEC and ECS based on AKMA
The authentication procedure details are as following: 
Step 0: UE performs primary authentication with the network. Then KAUSF is shared between UE and AUSF in Home network. 
Step 1.1: UE generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely.
Step 1.2: AAnF generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely. 
Step 2: Every EEC in this UE fetches the KAKMA and generates Kedge from KAKMA and EEC ID. 
NOTE:	In this way, there will be one KAKMA and multiple Kedge in every UE. 
Step 3: Every EEC computes MACEEC using the Kedge and EEC ID.
Step 4: UE sends Application Registration request (EEC ID, MACEEC, A-KID) to ECS. 
Step 5: ECS sends Authentication verificationKey request (EEC ID, MACEEC, A-KID) to AAnF for verification. 
Step 6: AAnF retrieves KAKMA using A-KID and sends back the KAKMA to ECS calculates Kedge using KAKMA and EEC ID, then verify MACEEC using the (Kedge and EEC ID). 
Step 7: ECS receives the KAKMA , then calculates Kedge using KAKMA and EEC ID, then verify MACEEC using the (Kedge and EEC ID).
Step 7: If AAnF verification success, then AAnF sends Authentication verification response(success) back to ECS, otherwise, AAnF sends Authentication verification response(fail) to ECS. 
Step 8: Based on the verification results, ECS decides whether to accept or reject the authentication request, and sends Authentication Request accept/rejection to EEC in the UE.
NOTE 1: 	It is not addressed in the present document how EEC ID is authenticated. 
NOTE 2: 	It is not addressed in the present document whether ECS could perform the authentication instead of AAnF. 
[bookmark: _Toc90024030][bookmark: _Toc90026478][bookmark: _Toc91075886]6.28.2.2	Derivation of Kedge and Kedge ID
Kedge is generated using KDF defined in Annex B.2.0 of TS 33.220 [8]. When deriving a Kedge from KAKMA, the following parameters should be used to form the input S to the KDF:
-	FC = xxxx(to be allocated by 3GPP)
-	P0 = <SUPI>,
-	L0 = length of <SUPI>.
The input key KEY should be KAKMA. 
[bookmark: _Toc90024031][bookmark: _Toc90026479][bookmark: _Toc91075887]6.28.2.3	Generation of MACEEC
When deriving MACEEC in the UE and AAnF, the following parameters should be used to form the input S to the SHA-256 hashing algorithm:
-	P0 = Kedge,
-	P1 = EEC ID,
The input S should be equal to the concatenation P0||P1 of the P0 and P1.
The MACEEC is identified with the 32 least significant bits of the output of the SHA-256 function. 
[bookmark: _Toc90024032][bookmark: _Toc90026480][bookmark: _Toc91075888]6.28.3	Solution Evaluation
This solution requires AAnF to perform the verification of the MACEEC.
This solution applies to the case when there are multiple EECs in one UE. 
When AKMA is used, this solution provides a way to avoid key sharing between different EECs in one UE, every EEC will have a unique key for authentication. 
This solution has no impact to AAnF and AKMA feature. 
NOTE:  with this solution, malicious EEC could also fake an EECID and stole the Kedge for authentication. This solution based on the assumption that EECID is difficult to be forge. EECID authenticatin could also rely on the application layer mechanism. 



***	END OF CHANGES	***
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