

	
3GPP TSG-SA3 Meeting #106-e 	S3-220141
e-meeting, 14 - 25 February 2022 	
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	33.839
	CR
	0003
	rev
	1
	Current version:
	17.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Adding modification and evaluaiton to solution#28

	
	

	Source to WG:
	Apple, OPPO

	Source to TSG:
	S3

	
	

	Work item code:
	FS_eEDGE_SEC
	
	Date:
	2022-02-14

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	It was propsed in the previous meeting that ECS could be the authentication function in solution#28, instead of the AAnF, so that AAnF doesn’t need to be enhanced. This contribution makes the corresponding change on step 5, 6, 7.
With this modification, this solution has no impact on the AKMA feature and AAnF function. At the same time, this solution could address the key diversity issue, which means, when AKMA is used, key sharing can be avoid between different EECs in one UE, every EEC will have a unique key for authentication.

	
	

	Summary of change:
	The contribution proposed to add the modification and the evaluation for solution#28.

	
	

	Consequences if not approved:
	Uncomplete mechanism.

	
	

	Clauses affected:
	6.28.2, 6.28.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

***	BEGIN OF CHANGES	***
[bookmark: _Toc90024026][bookmark: _Toc90026474][bookmark: _Toc91075882]6.28	Solution #28: Authentication between EEC and ECS based on AKMA
[bookmark: _Toc90024027][bookmark: _Toc90026475][bookmark: _Toc91075883]6.28.1	Introduction
This solution addressed key issue#2 Authentication and Authorization between EEC and ECS.
This solution proposes the authentication between EEC (Edge Enabler Client) and ECS (Edge Configuration Server) based on AKMA. To be more specific, it is proposed to use the KAKMA derived from the AKMA procedure as the trust root to perform the authentication between EEC and ECS.
It is assumed in this solution that ECS is located outside of the MNO's network.
[bookmark: _Toc90024028][bookmark: _Toc90026476][bookmark: _Toc91075884]6.28.2	Solution details
[bookmark: _Toc90024029][bookmark: _Toc90026477][bookmark: _Toc91075885]6.28.2.1	Procedure
	
[image: Timeline

Description automatically generated]
[image: Timeline

Description automatically generated]
Figure-6.28.2.1-1. Authentication between the EEC and ECS based on AKMA
The authentication procedure details are as following:
Step 0: UE performs primary authentication with the network. Then KAUSF is shared between UE and AUSF in Home network.
Step 1.1: UE generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely.
Step 1.2: AAnF generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely.
Step 2: Every EEC in this UE fetches the KAKMA and generates Kedge from KAKMA and EEC ID.
NOTE:	In this way, there will be one KAKMA and multiple Kedge in every UE.
Step 3: Every EEC computes MACEEC using the Kedge and EEC ID.
Step 4: UE sends Application Registration request (EEC ID, MACEEC, A-KID) to ECS.
Step 5: ECS sends Authentication verificationKey request (EEC ID, MACEEC, A-KID) to AAnF for verification.
Step 6: AAnF retrieves KAKMA using A-KID and sends back the KAKMA to ECS calculates Kedge using KAKMA and EEC ID, then verify MACEEC using the (Kedge and EEC ID).
Step 7: ECS receives the KAKMA , then calculates Kedge using KAKMA and EEC ID, then verify MACEEC using the (Kedge and EEC ID).
Step 7: If AAnF verification success, then AAnF sends Authentication verification response(success) back to ECS, otherwise, AAnF sends Authentication verification response(fail) to ECS.
Step 8: Based on the verification results, ECS decides whether to accept or reject the authentication request, and sends Authentication Request accept/rejection to EEC in the UE.
NOTE 1: 	It is not addressed in the present document how EEC ID is authenticated.
NOTE 2: 	It is not addressed in the present document whether ECS could perform the authentication instead of AAnF.
[bookmark: _Toc90024030][bookmark: _Toc90026478][bookmark: _Toc91075886]6.28.2.2	Derivation of Kedge and Kedge ID
Kedge is generated using KDF defined in Annex B.2.0 of TS 33.220 [8]. When deriving a Kedge from KAKMA, the following parameters should be used to form the input S to the KDF:
-	FC = xxxx(to be allocated by 3GPP)
-	P0 = <SUPI>,
-	L0 = length of <SUPI>.
The input key KEY should be KAKMA.
[bookmark: _Toc90024031][bookmark: _Toc90026479][bookmark: _Toc91075887]6.28.2.3	Generation of MACEEC
When deriving MACEEC in the UE and AAnF, the following parameters should be used to form the input S to the SHA-256 hashing algorithm:
-	P0 = Kedge,
-	P1 = EEC ID,
The input S should be equal to the concatenation P0||P1 of the P0 and P1.
The MACEEC is identified with the 32 least significant bits of the output of the SHA-256 function.
[bookmark: _Toc90024032][bookmark: _Toc90026480][bookmark: _Toc91075888]6.28.3	Solution Evaluation
This solution requires AAnF to perform the verification of the MACEEC.
This solution applies to the case when there are multiple EECs in one UE.
When AKMA is used, this solution provides a way to avoid key sharing between different EECs in one UE, every EEC will have a unique key for authentication.
This solution has no impact to AAnF and AKMA feature.
NOTE: with this solution, malicious EEC could also fake an EECID and stole the Kedge for authentication. This solution based on the assumption that EECID is difficult to be forge. EECID authenticatin could also rely on the application layer mechanism.

***	END OF CHANGES	***

image1.png
‘ | AUSF | | UDM | | SMF | ‘ AANF | | NEF ‘ |EdgeConﬁgurationServer

‘UE

I
‘ 0. Prinfary authentication and establishment of Kqusr ‘

1.1. UE generates 1.2. AAnF generates
Kakma and A-KID. Kakma and A-KID.

2. Every EEC|fetches the
Kakva and generates Keage
from Kakwa and EEC ID

3. EEC compute MACeec
using the Keage and EEC ID.

4. Application Registratipn request (EEC ID, MACkec, A-KID)

5. Authentication verification
(EEC ID, MAGEec, A-KID)

6. AANF retrieves Kakua using

A-KID, and calculate Kedge and

then verify MACkgec using the
(Kedge and EEC ID).

7. Authenticat|on verification
response(sjiccess/fail)

8. Authentication Request accept/rejection

image2.png
[oe [e=o]

| AUSF | | ubMm ‘

I | manF]

l 0. Prinfary authentication and establishment of K4usr

1.1. UE generates
Kaxma and A-KID.

2. Every EEC|fetches the
Kakma and generates Kedge
from Kakma and EEC ID

3. EEC compute MACeec

using the Kedge and EEC ID.

4. Application Registratipn request (EEC ID,

1.2. AAnF generates
Kakma and A-KID.

WACeec, A-KID)

8. Authenticatior

5. Key request

(A-KID)

6. AANF retrieves Kakva using
A-KID

6. Key responsg(Kakma)

Request accept/rejection

7. ECS calculates Kedge and
then verify MACee
(Kedge and EEC ID).

c using the

